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ABSTRACT

Reliable measurements of physiological stress are increasingly needed for eco-physiological research and
for species conservation or management. Stress can be estimated by quantifying plasma glucocorticoid
levels, but when this is not feasible, glucocorticoid metabolites are often measured from feces (FGCM).
However, evidence is accumulating on the sensitivity of FGCM measurements to various nuisance factors.
Careful species- and context-specific validations are therefore necessary to confirm the biological rele-
vance and specificity of the method. The goals of this study were to: (1) establish and validate sampling
methods and an enzymeimmunoassay to measure FGCM in the gray mouse lemur (Microcebus murinus);
(2) explore causes of variability in the FGCM measurements, and; (3) assess the consequences of captur-
ing and handling for free-living individuals by quantifying their stress responses via repeated fecal sam-
pling within capture sessions. We further assessed the influence of different handling protocols and the
animals’ previous capture experience on the magnitude of the physiological response. Our validations
identified the group-specific measurement of 11R-hydroxyetiocholanolone as the most suitable assay
for monitoring adrenocortical activity. The sample water content and the animal’s age were found to
significantly influence baseline FGCM-levels. Most captured animals exhibited a post-capture FGCM-
elevation but its magnitude was not related to the handling protocol or capture experience. We found
no evidence for long-term consequences of routine capturing on the animals’ stress physiology. Hence
the described methods can be employed to measure physiological stress in mouse lemurs in an effective
and relatively non-invasive way.

© 2013 The Authors. Published by Elsevier Inc. All rights reserved.

1. Introduction

mals is often necessary for physical examinations or sample collec-
tion. However, capturing and handling themselves are known to

The assessment of physiological stress is increasingly used in
many contexts of evolutionary biology, ecology and conservation
to assess the health and coping of individuals or populations with
environmental challenges (Ricklefs and Wikelski, 2002; Romero,
2004; Wikelski and Cooke, 2006). To this end, the capturing of ani-
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cause a stress response (Fletcher and Boonstra, 2006; Romero
and Reed, 2005) that may introduce significant bias to studies of
other phenomena if unaccounted for (Reeder and Kramer, 2005).
The level of invasiveness of the handling procedures can influence
the level of capture stress experienced by the animal (Bennett
et al., 2012; Garcia et al., 2000) and within an individual, the mag-
nitude of the physiological response to capture may change over
subsequent captures via habituation or sensitization to the stressor
(Boonstra, 2013; Dickens et al., 2013; Fletcher and Boonstra, 2006;
Garcia et al., 2000; Lynn et al., 2010; Romero, 2004; Walker and
Dee, 2006). Relatively little is known about the impact of capturing
and handling procedures on animals despite the potential conse-
quences for the research outcome and the welfare of the animals
involved.

0016-6480/$ - see front matter © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ygcen.2013.10.017


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ygcen.2013.10.017&domain=pdf
http://dx.doi.org/10.1016/j.ygcen.2013.10.017
mailto:anni.m.hamalainen@gmail.com
mailto:mheistermann@dpz.eu
mailto:mheistermann@dpz.eu
mailto:zoellafenosoa@gmail.com 
mailto:cornelia.kraus@gwdg.de
http://dx.doi.org/10.1016/j.ygcen.2013.10.017
http://www.sciencedirect.com/science/journal/00166480
http://www.elsevier.com/locate/ygcen

A. Hiamadldinen et al. / General and Comparative Endocrinology 195 (2014) 68-79 69

The physiological stress response - reflected by an increase in
circulating glucocorticoid (GC) levels - facilitates appropriate reac-
tions to and recovery from diverse challenges (Sapolsky et al.,
2000). Capturing may cause an acute elevation in stress hormone
output, but it might also alter the long term stress physiology of
the animal (Boonstra, 2013; Clinchy et al., 2011) if a return to nor-
mal state is not achieved between capture events. While chronic
stress may be adaptive in natural conditions in some circum-
stances (Boonstra, 2013; Crespi et al., 2013), chronically elevated
GC levels are typically associated with compromised health, repro-
duction and survival of individuals (reviewed in e.g. Bonier et al.,
2009; Romero, 2004). Therefore, capturing may adversely affect
especially those individuals that already have high GC levels prior
to the capture (Collins, 2001; Matthews et al., 2001) or have an im-
paired feedback system (e.g. due to old age) to facilitate the return
back to baseline GC (Sapolsky et al., 1986).

The physiological stress response to capture can be measured
via repeated blood sampling (e.g. Lynn et al., 2010; Romero and
Reed, 2005, see also (Fletcher and Boonstra, 2006) or, alternatively,
non-invasively using feces (Taylor, 1971). Fecal levels of GC metab-
olites (FGCM) reflect the baseline GC level at a delay of several
hours and provide an integrated measurement of physiological
stress levels over a period reflecting at minimum the animal’s
gut passage time (Harper and Austad, 2000; Sheriff et al., 2010;
Touma and Palme, 2005). FGCM may also better indicate the levels
of biologically active, unbound GCs than total GC levels measured
from blood (Breuner et al., 2013; Sheriff et al., 2011, 2010; Touma
and Palme, 2005).

Even though these advantages have led to the widespread use
of FGCM in studies of natural populations, several caveats have re-
cently been raised due to the sensitivity of FGCMs to potentially
confounding factors (Goymann, 2012). The assessment of stress
via FGCM measurements can be influenced by e.g. the ecological
season (Huber et al., 2003; Romero, 2002), the animal’s diet (Goy-
mann, 2005), metabolic rate and gut bacterial community (Goy-
mann, 2012) and, not least importantly, the treatment of the
samples and the analyses performed (Goymann, 2005; Heister-
mann et al., 2006; Huber et al., 2003; Millspaugh and Washburn,
2004; Mostl et al., 2005; Sheriff et al., 2011; Shutt et al., 2012). Fur-
thermore, the baseline GC level and the intensity of the endocrine
stress response are known to vary among individuals based e.g. on
their sex (Kudielka and Kirschbaum, 2005), age (Goncharova and
Lapin, 2002; Sapolsky et al., 1987), or prior experiences (Fletcher
and Boonstra, 2006; Garcia et al., 2000; Lynn et al., 2010; Walker
and Dee, 2006). As a result of these complex interactions, FGCM
data tends to be “noisy” and, to draw meaningful conclusions, it
is necessary to conduct careful species-specific validations of the
methods and an evaluation of factors potentially confounding
FGCM levels (Buchanan and Goldsmith, 2004; Millspaugh and
Washburn, 2004; Méstl and Palme, 2002; Romero, 2004; Sheriff
et al,, 2011; Touma and Palme, 2005).

In this study, we use FGCM measurements to quantify physio-
logical stress in a small primate, the gray mouse lemur (Microcebus
murinus). As GC excretion into feces has not been previously stud-
ied in the species, it was necessary to first select the most suitable
assay for recording HPA axis activity and to validate the method.
Biological validations have been suggested as a method alternative
to an ACTH-challenge for quantifying the hormonal stress response
(Goymann, 2005; Sheriff et al., 2011; Touma and Palme, 2005).
Therefore we measured GC levels of wild and captive mouse le-
murs before and after a known stressful event in three indepen-
dent experiments. Based on these data, we selected an assay,
assessed the lag-time to peak GC elevation and examined the influ-
ence of sample processing protocols on the FGCM measurements.

Following these validations, we examined stress responses to
capture and handling of wild animals via repeated FGCM

measurements. In a long-term monitored, routinely captured
population of gray mouse lemurs (Microcebus murinus) (e.g.
Dammhahn, 2012; Dammhahn and Kappeler, 2009; Kraus et al.,
2008) some individuals voluntarily enter a trap up to 20 times
per year and may be handled more than six times per year. The fact
that mouse lemurs are easily re-trapped might suggest that the
procedure is only minimally stressful to the individuals involved
or that they habituate easily to trapping, in which case routine
capturing may have few long-term consequences on their stress
physiology. We hypothesized that the stress response to routine
handling should be attenuated in animals with relatively frequent
capture experiences and, if repeated capturing evokes chronic
stress, this could translate to elevated baseline FGCM levels in
the animals that are captured often. Additionally, the magnitude
of the hormonal response should depend on the invasiveness of
the handling regime the individual is subjected to (Bennett et al.,
2012; Pitman et al., 1988). To evaluate these effects, baseline FGCM
and the change from baseline to response level FGCM were
measured via repeated fecal sampling during capture sessions.

2. Methods
2.1. The study population

The gray mouse lemur (M. murinus) is a small-bodied primate
(average body mass ~60-80 g) that inhabits dry deciduous forests
in Western Madagascar. The species is nocturnal, arboreal, sexually
monomorphic and solitary living. The study population in the for-
est segment “N5” in Kirindy forest, Western Madagascar, has been
intensively monitored since year 2001 for the purposes of long-
term data collection (see e.g. Dammhahn, 2012; Dammbhahn and
Kappeler, 2009; Kraus et al., 2008). All individuals of the study pop-
ulation are individually marked with a subcutaneous transponder
chip (Trovan). The animals are trapped using live-catch Sherman
traps baited with banana. Routine capturing is conducted on three
consecutive nights (“capture session”) monthly in March-May and
September—-November, in addition to which smaller scale captures
may take place for the purposes of specific research projects.

2.2. Fecal sampling and field extraction

Upon each capture, fresh fecal samples were collected into
polypropylene tubes from previously cleaned traps or when ani-
mals defecated during handling. The freshness of the feces was as-
sessed based on the presence of a glossy surface on the pellets,
since in the dry season the feces dry quickly after defecation. Be-
cause in most primates, a larger proportion of glucocorticoids are
excreted via urine than via feces (Bahr et al., 2000; Wasser et al.,
2000), any feces where urine contamination was suspected was
not sampled. The time of day of collection and time lags to process-
ing and extraction were recorded for each sample. Samples were
extracted into ethanol in the field within 4 h of sample collection
adapting a protocol described by Ziegler and Wittwer (2005) and
modified by Shutt et al. (2012). Briefly, the freshest collected fecal
pellets (total fecal mass of 0.15-0.8 g) were homogenized in a col-
lection tube or on a petri dish with a metal rod, then a subsample
of approximately 0.2 g (to the nearest 0.001 g) was weighed into an
extraction tube and mixed with 2 ml of ~90% ethanol. For logistic
reasons, the fecal suspensions were left to stand for 5-12 h, then
vortexed for 2 min. Samples were finally centrifuged using a man-
ually operated centrifuge (Hettich GmbH & Co. KG Tuttlingen, Ger-
many) for 2 min (Shutt et al.,, 2012). The supernatant was poured
into a 2 ml polypropylene tube, sealed with parafilm and stored
in a dark container at slightly below ambient temperatures until
export to Germany, where samples were stored at —20 °C until
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hormone analysis. The remaining fecal matter was sun-dried to a
constant mass to obtain an estimate of the water content of the
feces. The repeatability of the field processing and extraction pro-
cedure was assessed by splitting 16 homogenized samples col-
lected in the wild into two subsamples and treating them the
same way.

2.3. Method validations

2.3.1. Biological validation 1: Sampling series of wild animals in
temporary captivity

We determined the validity of cortisol (CORT; Palme and Mostl,
1997), corticosterone (CCST; Heistermann et al., 2006), and two
group-specific enzymeimmunoassays (EIA) against cortisol metab-
olites with a 3a,11-ox0 (11-oxoetiocholanolone: 3a,11-0x0-CM;
(Mostl and Palme, 2002) and 3o,11B-dihydroxy structure (118-
hydroxyetiocolanolone: 3a,11B-dihydroxy-CM; (Ganswindt et al.,
2003) to assess adrenocortical activity. All four assays have been
successfully used to monitor GC output in various primate and
non-primate species (Ganswindt et al., 2003; Heistermann et al.,
2006; Martinez-Mota et al., 2008; Pirovino et al., 2011; Shutt
et al., 2012; Wasser et al., 2000; Weingrill et al., 2011), including
other lemurs (Ostner et al., 2008; Fichtel et al., 2007). For valida-
tion, we used the response to capture-and-handling stress (previ-
ously used e.g. by Bosson et al. (2009), Dickens et al. (2009),
Fletcher and Boonstra (2006)) in 4 individuals living in the camp
area (thus being accustomed to human presence) to evaluate
whether the increase in GC output is detected by the different fecal
GC assays.

The animals were captured along paths in the field camp at
sunset in October 2010 (2 males and 1 female) and in October
2012 (2 females; one female was used in both seasons). The cap-
tured individuals were handled briefly, first fecal samples were
collected within 2 h of capture to determine pre-capture control
levels and the animal was allowed to re-enter the trap and left
in a safe area overnight. In the morning, the animals were han-
dled for approximately 10 min for weighing, morphometric mea-
surements and hair sampling. At dusk of the same day, the
individuals were released into individual cages of approximately
1 m? that were kept inside a closed platform (for protection from
predators) and furbished with branches, nest boxes and cover.
Underneath each cage, plastic sheets were placed to facilitate
collection of feces. The animals were held captive for 5 days.
During this time they were fed with fruit and insects each morn-
ing and evening (approximately 12 h intervals) and all available
fecal matter was removed from the cage at these occasions. At
each collection, the freshest fecal pellets were homogenized
and 0.2 g was extracted according to the protocol outlined in
Section 2.1.

2.3.2. Biological validation 2: Translocation of captive animals

Data from a translocation event was used to further assess the
suitability of the four GC assays when a group of 17 animals (living
in 8 subgroups of 1-3 individuals) was transported from Biopark
d’Archamps (Archamps, France) to the German Primate Centre.
Three fecal samples were collected from each subgroup of animals
in the 5 days before the transport to record baseline GC levels and
for 6 days thereafter to establish the GC response. Sleeping boxes
were checked every morning and feces, if present, was collected
in polystyrene tubes and stored at —20 °C until further processing.
Since animals within each subgroup shared nest boxes, we were
unable to assign samples to specific individuals, thus, we assessed
the stress-related changes in FGCM concentrations on the group
level.

2.3.3. Biological validation 3: Repeated sampling of wild animals
recaptured within a capture session

We collected repeated samples from wild individuals that were
recaptured within capture sessions (see Section 2.1) to determine
whether a capture-induced increase in the FGCM-levels could be
seen in the days following a capture, and to assess the optimal de-
lay to recording the maximum elevation in FGCM. Animals were
sampled during handling on day 1 of the session, and subsequently
samples were collected from animals recaptured one (“day 2”,24 h
delay, n=21), two (“day 3", 48 h delay, n =23) or three (“day 4",
72 h delay, data from additional capture nights, n =26) days after
the first capture. For this analysis we only included animals that
were not captured on any of the intermediate days to exclude
the possibility of cumulative stress due to repeated captures. Based
on the magnitude of the change in FGCM from day 1 to the subse-
quent recaptures (see Section 3.1.4), and data from the other two
biological validation series, a sampling interval of two days
(~48 h, day 1 to day 3 of the session) was chosen for the subse-
quent study on capture-and-handling stress (Section 2.4).

2.3.4. Hormone analysis and HPLC

The fecal samples collected from captive mouse lemurs were
processed and extracted following Heistermann et al. (1995). In
summary, we lyophilized and pulverized the feces and extracted
an aliquot representing 0.04-0.06 g of fecal powder in 3 ml of
80% methanol in water by vortexing the suspension for 10 min.
Following centrifugation of the fecal suspension at 3000 rpm for
10 min, we recovered the supernatant and stored it at —20 °C until
analysis. We analyzed fecal extracts for GC immunoreactivity with
the four aforementioned EIA systems as described by Heistermann
et al. (2004, 2006). Information on antibody characteristics, stan-
dards, and hormone labels used as well as on other assay details,
including assay sensitivities, is given in Heistermann et al.
(2006). Intra- and inter-assay coefficients of variation of high-
and low-value quality controls were <10% and <13%, respectively,
for all four assays.

Based on the outcome of the two biological validation tests (see
Sections 3.1.1 and 3.1.2), the two group-specific assays were
deemed most suitable for monitoring FGCM output. In order to
characterize the patterns of metabolites measured by these two as-
says and evaluate any co-measurement of certain fecal androgens
which could potentially be detected by antibodies raised against
cortisol metabolites (see Ganswindt et al., 2003; Heistermann
et al., 2006), we performed reverse-phase high pressure liquid
chromatography analysis (HPLC). HPLC was carried out as de-
scribed by Mohle et al. (2002) and Heistermann et al. (2006) using
a fecal extract generated from a sample from one of the wild male
study subjects. This sample was collected shortly prior to the onset
of the mating season when the male had enlarged testes and pre-
sumably high levels of androgens (Aujard and Perret, 1998). We
measured each HPLC fraction in the two group-specific FGCM as-
says to generate profiles of immunoreactivity.

Based on the combined validation and HPLC results, the 11-
hydroxyetiocholanolone (30,11B-dihydroxy-CM) EIA was used for
the analysis of all fecal samples. The EIA was performed as de-
scribed in detail by Heistermann et al. (2004). Prior to hormone
measurement, we diluted extracts 1:50-1:300 (depending on con-
centration) in assay buffer and took duplicate aliquots to assay.
Sensitivity of the assay was 1 pg/well. Serial dilutions of fecal ex-
tracts gave displacement curves parallel to those obtained with
the 118-hydroxyetiocholanonole standard. Intra- and inter-assay
coefficients of variation of high- and low-value quality controls
were 6.5% (high, n=16) and 7.4% (low, n=16) and 10.4% (high,
n=24) and 11.9% (low, n = 24), respectively. Hormone concentra-
tions are given as ng/g fecal wet weight for samples from the wild,
and ng/g dry weight for samples from captivity.
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2.3.5. Testing post-defecation change in FGCM levels

The delay from defecation to sample processing has been shown
to potentially affect FGCM levels (Millspaugh and Washburn, 2004;
Mostl et al., 1999; Shutt et al., 2012) as a result of bacterial induced
alterations on excreted metabolites. Dependent on field conditions
and trapping designs it is not always possible to know the exact
time of defecation or to immediately process samples. Since in
our study, feces had to be stored unpreserved for up to 4 h after
defecation (see Section 2.2), we tested whether FGCM levels
change as a function of the time elapsed between defecation and
sample preservation and extraction. For this, we recorded the time
delays from collection to processing for all samples collected in the
wild and tested statistically for time effects (from collection to
preservation in ethanol; from collection to extraction; from preser-
vation in ethanol to extraction). Additionally, we conducted a con-
trolled degradation experiment in captivity at a mouse lemur
breeding colony in Brunoy, France (MNHN; European Institutions
Agreement No. 962773), where larger sample masses compared
to the wild were obtainable. In total, we collected 11 fresh fecal
samples (4 pooled samples from 2 to 3 individuals, individual sam-
ples from 7 animals) immediately after defecation and homoge-
nized them well. Each sample was split into 2-7 02g
subsamples (depending on total sample mass obtained) which
were placed in extraction tubes. 2 ml of 90% ethanol was added
to one of the subsamples within one hour after defecation (time
0 control). The remaining samples were left at ambient tempera-
ture (ca. 22-24 °C) and ethanol was added to the samples at one
to two hour intervals until 10 h after defecation.

After the addition of the ethanol, each subsample was briefly
stirred in order to immerse the entire fecal sample in the solvent.
All tubes were stored at ambient temperature until the following
morning (within 18 h of sample collection), and samples were then
extracted as described in Section 2.2, with two exceptions: the pre-
cipitate was allowed to settle instead of centrifuging the samples,
and the pellets were oven-dried instead of sun-drying.

2.4. Physiological response to capturing and different handling regimes

The stress response to capture and handling in the wild study
population was evaluated during five monthly 3-day capture ses-
sions in the non-reproductive season (March-July 2012) (see Sec-
tion 2.1). In each session, traps were set before dusk and closed
at dawn. In March-May, traps were additionally monitored in
the evening when a subset of the captured animals was subjected
to brief handling on site of capture for a physical strength experi-
ment. All captured animals were transported to the field camp. In
the morning following the first night of the capture session (“day
1), each individual was subjected to handling and fecal samples
were collected for establishing the baseline FGCM level. At dusk,
the animals were released at the capture location.

To assess the magnitude of the physiological stress caused by
capture and handling, repeated samples were collected from the
individuals that were captured on days 1 and 3 of the capture ses-
sion (n = 65) and the change in FGCM from day 1 to day 3 was used
to quantify the stress response. On day 1 each individual was sub-
jected to one of three handling protocols: minimum handling, re-
peated handling or anesthesia (Table 1). On day 3, they were
only let out of the trap into a fabric bag to facilitate fresh feces col-
lection. Many individuals (n =38) were also captured on day 2,
intermediate to the two sampling events, but were not handled.

Anesthesia was avoided whenever possible to minimize any ad-
verse effects of the chemical treatment and therefore, only un-
marked individuals were anesthetized in order to insert a
transponder and gain tissue samples. Hence, we cannot fully disen-
tangle the effects of anesthesia, first time capture and age (presum-
ably, the youngest individuals of the cohort are anesthetized) as

the size and complexity of the data set did not permit a detailed
analysis of the possible interactions of these factors.

The animals’ ages (juvenile, <1 year or adult, >1 year old) and
individual capture histories were drawn from the routine capture
data. Lifetime capture experience was calculated as the total num-
ber of capture events from birth to June 2012 (median = 6, range:
1-95), divided by the age in years (range: 0-10) to adjust prior
experience for differences in exposure to traps.

2.5. Statistical analysis

2.5.1. Validation of a fecal glucocorticoid assay

A linear mixed effects model (Pinheiro and Bates, 2000) was
used to estimate post-defecation change in FGCM in untreated
feces in the controlled experiment in captivity. The log-transformed
sample FGCM was used as the response variable and FGCM at time
0 (control), number of hours after collection and their interaction
were included as covariates, weighted by the number of samples
in the series. Sampling series identity was added as a random
effect.

For samples collected in the wild, the influence of lag times
from sample collection to the different stages of processing (pres-
ervation in ethanol and extraction) on the sample FGCM level were
calculated using linear regression, with fecal water content (see
Section 2.5.2) included as a control variable. Protocol repeatability
was assessed by calculating Spearman’s correlation coefficients for
16 duplicate samples. The optimal lag time to recording the max-
imum hormonal response to capture and handling (change from
day 1 to day 2, 3 and 4, with no intermediate capture events)
was assessed using one-tailed paired t-tests.

2.5.2. Baseline FGCM and the stress response to capturing and
handling

Linear mixed models (Pinheiro and Bates, 2000) were used to
examine the factors causing variation in baseline FGCM and in
the stress response to capturing and handling. All mixed models
were built using the R-program package Ime4, employing the func-
tion Imer with a Gaussian error distribution and an identity link
(Bates et al., 2012), and individual identity was used as a random
effect. Variables were log-transformed when necessary to meet
assumptions of normality, homoscedasticity and linearity of rela-
tionships, which were assessed using residual plots. Model stabil-
ity was confirmed by calculating variance inflation factors and by
excluding data points one by one and comparing the resulting esti-
mates and fitted values with the inclusive model. The P-values
were obtained via Markov Chain Monte Carlo (MCMC)-estimation
Baayen, 2011 or, for factorial variables with 3 or more levels, via
likelihood ratio tests (LRT). The relationship between the individ-
ual’s baseline FGCM level and the magnitude of the response was
studied with simple linear regression, controlling for the possible
influence of second day captures.

Two potential nuisance factors: fecal water content (water%)
and the time of day of sampling were included as control variables
in the models. Fresh fecal mass was used instead of dry mass in
samples collected from the wild to adjust for a higher measure-
ment error in weighing very small dry sample masses. The water%
(difference in mass between fresh and dried sample) showed high
variability and strongly, negatively influenced the measured FGCM
level (= —3.430, SE=0.613, df = 130, X* =30.510, P < 0.001). Sam-
ple water content was therefore controlled for in all models. A part
of the baseline samples were collected in the evening before the
handling and all other samples in the morning during handling.
As it is known from many species that the diurnal rhythms can
cause variation on GC-levels over the course of the day (Bosson
et al., 2009; Rimbach et al., 2013), we also included the time of
day of sample collection in the baseline model.
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Table 1
Description of the handling regimes used and associated sample sizes.
Regime Procedure ~Handling Sample
time size
Minimum Body mass measurement only. The animal is released from the trap into a fabric bag in the morning and weighed usinga 2 min 47
handling Pesola scale, then allowed to re-enter the trap.
Repeated The animal was handled briefly for a physical strength experiment on the night before the routine processing and handled 5 min+2 min 13
handling again in the morning according to the minimum handling regime.
Anesthesia Unmarked individuals were briefly anesthetized with 0.2 ml subdermally administered Ketamin-solution (Ketanest 100, 25 min 12

Parke-Davis), then tissue sampled by cutting small pieces of the ears, equipped with a subcutaneous transponder
microchip (Trovan) and hair sampled using pet clippers. Morphometrics and body mass were measured.

To study how the baseline FGCM was influenced by variables
pertaining to the individual (age, sex, lifetime capturing experi-
ence) and the sampling event (month, time of day, water%) we
used all baseline samples collected during the field season
(March-July 2012, including also cases where the individual was
not recaptured) in order to increase the sample size, resulting in
n =277 samples from 145 individuals.

To estimate the influences of lifetime capture experience and
handling regime on the magnitude of the stress response to cap-
ture and handling, we created interaction terms of each of these
variables with the sampling stage (baseline vs. response, sensu
Liang and Zeger (2000) and Liu et al. (2009)) and modeled their
influence on the sample FGCM level. From the baseline analyses
(see Section 3.2) it was evident that water% explained a large part
of the variation in the FGCM levels and was therefore included as a
control. Furthermore, age and the potential cumulative effect of an
intermediate capture between samplings (second day capture)
were controlled for by including their interactions with stage.
Due to missing values, the total number of cases included in the
model was 55 observations from 28 individuals. To account for
the low sample size and model complexity, we attempted to im-
prove the model fit by removing the least significant interaction
terms (above P=0.1) one at a time based on LRT (Engqvist, 2005).

Since the influences of age, experience and regime cannot be
separated in the anesthesia regime (only juvenile animals were
anesthetized) we restricted the above response model to cases
from the minimum and repeated handling regimes. Therefore, we
constructed a separate model to assess the difference between
the anesthesia and minimum regimes in juveniles only (n=>53
observations from 27 individuals), including regime and interme-
diate capture as interaction terms with stage, and water% as con-
trol. Capture experience was O for all anesthetized individuals
and was therefore excluded from the model.

Although baseline values were not significantly influenced by
the time of day of sampling (see Section 3.2), it was further exam-
ined in stress response models in order to control for possible time
differences between the repeated sampling events in stress re-
sponse models (evening samples n = 6). For this purpose the mod-
els were re-run after excluding the 6 cases of evening sampling.
The exclusion did not affect the model outcomes and therefore
all cases were included in the analyses and the time of day of sam-
pling removed from the final models.

Means are given with standard errors and significance levels
were set to P = 0.05 for all tests. All analyses were done in R version
2.15.1 (R Development Core Team, 2012).

3. Results
3.1. Validation of a fecal glucocorticoid assay
3.1.1. Biological validation 1

In absolute terms, the highest levels of fecal GCs were measured
by the group-specific 11-oxoetiocholanolone assay whilst the low-

est concentrations were detected by the CCST assay (Table 2;
Fig. 1). Nevertheless, in all 5 cases of captured wild animals, all four
assays measured a similarly strong response to the capture and
handling as reflected by an 8-9-fold average increase in FGCM lev-
els (Table 2; Fig. 1). FGCM levels started to rise within 24 h of the
capture, with median lag times to peak FGCM response ranging
from 38 to 50 h across the four assays (Fig. 1; Table 2). There
was considerable individual variation in the timing of the peak
FGCM response in all assays; however, the two group-specific as-
says were more consistent in this respect than the CORT and CCST
assays (Table 2). FGCM levels usually returned to pre-stress levels
by day 4 (Fig. 1).

3.1.2. Biological validation 2

The FGCM response to the translocation event was generally
similar to that seen in the captured animals. Following transloca-
tion, a clear increase in FGCM levels was detected by the different
assays with the exception of the CORT measurement which dem-
onstrated a decrease (Fig. 2). The FGCM increase measured by
the two group-specific EIAs was similar in magnitude (about 4-
fold) and more pronounced than that of the CCST assay (about 2-
fold). In terms of timing, both the start of the FGCM rise (on aver-
age at day 3 post-transport; Fig. 2) as well as the occurrence of
peak levels (day 4 post-transport, Fig. 2) was delayed by about
two days compared to the situation observed in the wild animals.
This delay was most likely due to the fact that all animals were
completely inactive and did not feed on the first day after arrival
and remained very inactive with only small amounts of food con-
sumed in the days thereafter. It is conceivable that metabolic rate
and gut passage time were thus slowed down, resulting in a de-
layed hormone metabolism and excretion pattern. Additionally,
the fact that animals were only sampled once per day likely con-
tributed to the pronounced delay times in the GC responses
observed.

3.1.3. HPLC

Since the two group-specific FGCM assays appeared to be of
similar value for monitoring adrenocortical activity, we performed
an HPLC analysis to characterize the immunoreactive metabolites
present in the feces and measured by the two assays. HPLC immu-
noreactivity profiles indicated the presence of several distinct peaks
between fractions 9 and 31 in both assays (Fig. 3), at positions
where cortisol metabolites elute in our HPLC system (Heistermann
et al., 2006). The presence of abundant immunoreactivity found
at fractions 25 (118-hydroxyetiocholanolone EIA) and 30
(11oxoetiocholanolone EIA) at the elution positions of 118-
hydroxyetiocholanolone and 11-oxoetiocholanolone standards,
respectively, indicate that these two cortisol metabolites are abun-
dant in the feces of grey mouse lemurs. In the 110xo0-etiocholano-
lone assay, however, the major peak of immunoreactivity was
detected around fraction 50 at a position where in other primate
species metabolites of testosterone elute (Mdhle et al., 2002), indi-
cating a substantial co-measurement of steroids not deriving from
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Table 2
Fecal glucocorticoid concentrations (as detected by four different GC assays) in response to capture stress in wild mouse lemurs (biological validation 1).
Individual 30,11R-dihydroxy-CM® 30,110x0-CM® Cortisol CCST
Pre®  Peak”  Delta® Lag! Pre®  Peak” Delta® Lag! Pre®  Peak® Delta® Lag® Pre*  Peak® Delta® Lag®
06DF B6BB" 0.21 1.68 8.0 62.5 0.50 4.50 9.0 62.5 0.42 1.44 3.4 38.8 0.12 0.87 7.4 62.5
06E9 B40D 0.10 1.11 11.1 50.3 0.20 2.06 103 383 0.51 6.13 12.0 38.3 0.09 1.37 16.1 38.3
06E9 CDDE 0.12 3.12 27.0 50.3 0.09 7.47 79.3 383 0.17 2.06 121 26.3 0.06 0.52 8.5 15.8
06DF B6BB" 1.23 8.90 7.2 45.5 2.51 9.36 3.7 45.5 0.46 1.94 4.2 45.5 0.36 1.41 39 45.5
CAMP F1 0.02 0.13 7.6 345 0.05 0.44 8.8 345 0.11 0.99 9.0 69.5 0.06 0.86 143 69.5
Median 0.12 1.68 8.0 50.3 0.20 4.50 9.0 383 0.42 1.94 9.0 383 0.09 0.87 8.5 45.5
¢ Baseline levels (i.e. levels within 2 h after capture) in pg/g wet feces (see Section 2).
b peak levels in response to capture in pg/g wet feces.
¢ x-fold increase of peak levels above baseline concentrations.
94 Lag time in hours between time of capture and peak response.
A Animal was captured twice (in 2010 and 2012).
B Group-specific assay.
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(change from day 1 to day 2, 3 or 4) revealed a significant elevation
from baseline FGCM at each time interval, with a 2-day lag
(samples from day 1 and day 3) showing the strongest and
most consistent effect (Table 3, Fig. 4), confirming the results on
GC-response time lags derived from biological validation 1 (camp
animals, Sections 2.3.1 and 3.1.1). Consequently, the day 1 to day
3 change in FGCM was used to quantify the stress response to
capture and handling in the subsequent experiment.

3.1.5. Fecal sampling method

The protocol repeatability assessment revealed a highly signifi-
cant correlation between the FGCM levels measured in duplicate
subsamples (for ng/g fresh feces rs = 0.92, P < 0.001, n = 16). In sam-
ples collected from the wild (n = 289), FGCM results were not sig-
nificantly influenced by differences in the time lags from collection
to preservation in ethanol (range: 0.5-4 h, §= —0.138, SE =0.126,
t=-1.090, P=0.276), from collection to extraction (6-14h,
B =0.194, SE=0.125, t=1.558, P=0.120) or from preservation in
ethanol to extraction (5-12h, g=-0.147, SE=0.127, t=—1.158,
P=0.248).

Fig. 2. Change in immunoreactive FGCM levels as measured by (A) the two group-
specific assays and (B) the cortisol and CCST assays in response to translocation.
Data points represent median values calculated for 24 h intervals across the 8
groups of animals examined. Pre = pre-transport baseline FGCM levels.

3.1.6. Post-defecation changes in FGCM

The profiles of change in FGCM over time (Fig. 5) illustrate that
the delay from sample collection to preservation in ethanol did not
induce statistically significant changes in the sample FGCM (base-
line FGCM(t0): g =0.950, SE =0.027, t=34.93, P<0.001, hours to
ethanol added: g =0.118, SE = 0.046, t = 2.57, P = 0.292, interaction:
B =-0.020, SE = 0.006, t = —3.13, P=0.121).

3.2. Correlates of baseline FGCM
The percentage of water negatively influenced the FGCM level

in a sample (Table 4). The overall baseline FGCM decreased slightly
over the course of the season, but the overall influence of the
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Fig. 3. HPLC profiles of immunoreactivity detected with the 30,11p-dihydroxy-CM and 30,11-0x0-CM EIA in a fecal extract of a wild male gray mouse lemur. Arrows and
numbers indicate the associated elution positions of reference standards: (1) cortisol (fraction 14/15), (2) corticosterone (22/23), (3) 11R-hydroxyetiocolanolone (24/25), (4)
11-oxoetiocholanolone (29/30), (5) 5B-androstane-3,11,17-trione (36), (6) testosterone (43), (7) androstenedione, dehydroepiandrosterone (55/56), (8) epiandrosterone, 53-
dihydrotestosterone (72), (9) 5B-androstane-3o-0l-17-one (82/83) and (10) androsterone (100).

Table 3

Differences between baseline and response FGCM level, measured by the 118-hydroxyetiocholanolone assay, at a delay of 1-3 days. Paired samples from recaptures within a

capture session.

Approximate time difference (h) One-tailed paired t-test df P
Day 1 vs. day 2 24 t=3.449 20 0.001
Day 1 vs. day 3 48 t=4.159 27 0.0001
Day 1 vs. day 4 72 t=1.832 16 0.043
24 48 72
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Fig. 4. Change in FGCM levels, detected by the 118-hydroxyetiocholanolone assay,
from baseline (day 1) to a consecutive sample collected (A) 24, (B) 48 or (C) 72 h
after the baseline sample. For statistics see Table 3.

month of capture was not statistically significant (month of cap-
ture: X3 = 6.962, P=0.138). Adults had on average higher baseline
FGCM values than juveniles (Table 4), but the time of day of sam-
pling, the animal’s sex and previous capture experience had no sig-
nificant influence on the FGCM level (Table 4).

3.3. Physiological response to capturing and handling

In the capture and handling experiment, an increase in the
FGCM level from day 1 to day 3 was evident in 78% (61/78) of
the sample pairs (3.30+2.81-fold increase from baseline,
tpaired = 6.12, df=77, P<0.001). The magnitude of the response
was positively influenced by the baseline FGCM level (B =0.449,
SE = 0.144, F, 45 = 9.406, P=0.002). The individuals that showed a
decline from day 1 to day 3 had higher than average baseline FGCM

T T T T T I
0 2 4 6 8 10

Hours from defecation to preservation in ethanol

Fig. 5. Post-defecation changes over time in FGCM levels (detected by the 11beta-
hydroxyetiocholanolone assay) in untreated feces, based on the experiment in
captivity. Lines (95% loess smoothers) represent sampling series of fecal samples
divided into several subsamples (points) that were preserved in ethanol at different
delays after defecation.

concentrations and mainly represented the minimum handling re-
gime (15/17 cases).

In the stress response model, the interaction terms stage x re-
gime (LRT: X3=0.007, P=00934) and stage x experience
(X? =0.028, P= 0.867) were the least significant terms and were re-
moved from the model in this order. In the final model, the magni-
tude of the stress response tended to be slightly higher for the
animals that were captured also on the intermediate day
(P=0.068, Table 5). The response strength was not significantly
influenced by the animal’s age, handling regime or capture experi-
ence (Table 5).
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Table 4
Variables influencing the baseline FGCM levels (day 1 level). P-values are based on
MCMC-tests. n = 277 observations from 145 individuals.

Fixed effects Estimate SE t P
Intercept 8.040 0485 16,573  <0.001
Water% -3.661 0.620 -5.906 <0.001
Time of day (Ref. Morning) 0.295 0.151 1.948 0.087
Month (Ref. March) April  -0.355 0199 -1.783 0.068
May  -0.486 0203 -2.392 0.008
June  -0.519 0.232 -2.239 0.008
July —-0.365 0231 -1.583 0.067
Age category (Ref. Adult) —0.404 0.136 -2.959 0.002
Sex (Ref. Female) 0.081 0.126 0.645 0.613
Capture experience 0.023 0.074 0.305 0.727

In the model for anesthesia vs. minimum handling (juveniles
only), the regime x stage interaction was non-significant (LRT:
X?=0.356, P=0.551). After removing the interaction term, the
anesthesia main effect was significant (reference value: no anes-
thesia, p = —0.662, SE = 0.269, t = —2.463, P = 0.009), indicating that
anesthetized animals had overall lower FGCM values than the min-
imum handling juveniles.

4. Discussion

In this study, we successfully established a group-specific 11R-
hydroxyetiocholanolone assay for monitoring the physiological
stress response in the grey mouse lemur via fecal samples and ap-
plied this method to explore the influence of capture and handling
on the hormonal stress response in wild animals. These data
showed no evidence of habituation or sensitization of individuals
as a response to frequent capture and handling. In addition, the re-
sults indicate that more invasive handling did not cause a stronger
stress response in the animals. Our study provides important new
information for field researchers interested in using fecal glucocor-
ticoid analysis techniques to monitor adrenocortical activity in
mouse lemurs and suggests that routine capturing by trapping
and brief handling at monthly intervals does not cause chronic
stress to animals.

4.1. Validation of a fecal FGCM assay

A major aim of this study was to validate a reliable assay for
quantifying fecal glucocorticoids as a measure of physiological
stress in gray mouse lemurs which is of primary importance before
any application (Buchanan and Goldsmith, 2004; Heistermann
et al., 2006; Touma and Palme, 2005). Our tests of physiological
validity suggest that at least three of the four glucocorticoid EIAs
tested are generally suitable for the detection of changes in adre-
nocortical activity in the species through fecal GC metabolite anal-
ysis. However, the two group-specific assays appear to be more
sensitive in detecting stress-related changes in glucocorticoid

Table 5

output as shown by a more consistent response across contexts
compared to the CCST and, in particular, the CORT assay. Thus,
the group-specific assays appear to be better suited for assessing
adrenocortical activity in gray mouse lemurs.

Moreover, HPLC immunoreactivity peaks co-eluting with 1183-
hydroxyetiocholanolone and 11-oxoetiocholanolone standards
indicated the presence of 3a,11R-dihydroxylated GC metabolites
and 11,17-dioxoandrostanes, both of which have also been re-
ported as abundant fecal glucocorticoid metabolites in other pri-
mate and non-primate species (e.g. Ganswindt et al., 2003;
Heistermann et al., 2006; Ostner et al., 2008; Palme and Mostl,
1997). Since group-specific glucocorticoid assays measure a broad
spectrum of steroids, there is, however, a higher risk of co-mea-
surement of androgen metabolites (Ganswindt et al., 2003; Schatz
and Palme, 2001) compared to more specific assays. Our HPLC data
indicate that, similar to findings in the chimpanzee (Heistermann
et al., 2006), this is likely the case concerning the 11-oxoetiocho-
lanolone assay which detected peak amounts of immunoreactivity
at a position where in our HPLC system metabolites of testosterone
(but not of cortisol) elute (Ganswindt et al., 2003; Heistermann
et al., 2006; Mohle et al., 2002). The results also indicate a small
potential for co-measurement of androgen metabolites by the
118-hydroxyetiocholanolone assay. For this study, however, this
is likely of negligible importance given that the vast majority of
samples of our capture stress experiments were collected when
animals are reproductively quiescent and sex hormone levels are
probably low (Aujard and Perret, 1998), thus FGCM levels in the
experiments were unlikely affected by the animals’ reproductive
state. In contrast, the sample used for HPLC came from a male in
prime reproductive condition (shortly before the onset of the short
mating season, with maximum testes size) when androgen levels
are clearly elevated (Aujard and Perret, 1998). For measuring FGCM
in our samples, we therefore chose the 11R-hydroxyetiocholano-
lone assay which has proven to be a versatile assay to monitor
adrenocortical activity in many other species of primates (Fichtel
et al.,, 2007; Ostner et al.,, 2008; Shutt et al.,, 2012; Weingrill
et al, 2011; Heistermann et al., 2006; Martinez-Mota et al.,
2008; Pirovino et al., 2011; Rimbach et al., 2013) and non-primates
(Ganswindt et al., 2003; Mostl et al., 2002).

Our data from the capture-validation study as well as from the
repeated capture experiment of wild animals indicate a 2-day de-
lay in FGCM excretion from stressor to peak response, with levels
starting to rise within 24 h of the stressful event. Although this
time lag in fecal glucocorticoid excretion is within the range of
those reported for many other primate species (Heistermann
et al., 2006; Pirovino et al., 2011; Shutt et al., 2012; Weingrill
et al., 2011; Whitten et al., 1998), it is distinctly longer than ex-
pected given the small body size of the species and a gut passage
time (which usually determines the lag time between steroid
secretion in blood and appearance of the metabolites in feces
(Palme, 2005)) of less than 24 h (Raharivololona, 2009). The reason
for this long delay in peak FGCM excretion is unknown, but may, at

Variables influencing the FGCM response to capture and handling, final model. Interaction terms are indicated with “x”. P-values are based on MCMC-tests. N = 55 observations

from 28 individuals.

Fixed effects Estimate SE t P

Intercept 5.777 0.909 6.357 <0.001
Stage 0.464 0.410 1.133 0.335
Water% —0.830 1.144 —0.726 0.476
Age category (Ref. Adult) 0.264 0.295 0.895 0.413
Intermediate capture (Ref. none) —-0.101 0.343 -0.294 0.782
Capture experience -0.125 0.187 -0.671 0.514
Regime (Ref. Minimum) 0.334 0.282 1.187 0.253
Intermediate capture (Ref. none) x Stage 0.909 0.419 2171 0.068
Age category (Ref. Adult) x Stage -0.677 0.352 -1.922 0.118
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least in part, be explained by cumulative stress of capture with up
to 20 h restraint in the trap (Fletcher and Boonstra, 2006; Garcia
et al., 2000) and subsequent handling and housing in a novel envi-
ronment (validation animals). As suggested by our translocation
data, the extent of activity and food consumption appears also to
have a marked effect on the time course of FGCM excretion, prob-
ably by altering general metabolic rate and processes, which might
affect hormone excretion patterns (Goymann, 2012; Morrow et al.,
2002). There was no indication of reduced activity and feeding in
our wild study animals, however. Finally, a pronounced and de-
layed enterohepatic recirculation of glucocorticoids prior to excre-
tion of the metabolites into the feces (Lindner, 1972; Mostl and
Palme, 2002; Symonds et al., 1994) may also contribute to the long
lag time, although this remains completely speculative.

Collectively, these data suggest that peak FGCM output re-
sponses in the grey mouse lemur can generally be predicted to oc-
cur 1-2 days after exposure to a stressor. There was, however,
considerable variation among individuals in the time to peak FGCM
elevation. This variation was particularly evident for the CORT and
CCST assay, whilst time lags for the two group-specific assays were
more consistent, a finding also seen in lowland gorillas (Shutt et al.,
2012). The reason for this is not clear but may be related to differ-
ing influences of factors affecting metabolic processes and the pro-
duction of the various types of cortisol metabolites measured by
the different assays. Further studies on stress responsiveness and
GC-metabolism in the species, including an ACTH-challenge test
and the assessment of post-peak decline in the FGCM in a larger
number of animals will be required to identify the causes of the
long delays and the heterogeneity of responses.

Most wild-caught individuals were able to return from the peak
elevation to near the baseline within 2-3 days. Typically, habitua-
tion to captivity is assessed in time periods of months rather than
days, particularly when behavioral aspects are studied and very
few studies exist on the short term (physiological) habituation to
captivity. One such study by Dickens et al. (2009) showed that
wild-caught chukar partridge (Alectoris chukar) can return from
stress response GC levels to near the baseline levels in approxi-
mately 9 days after capture and subsequent captivity. Short term
studies such as ours provide evidence towards a more rapid phys-
iological habituation than would be expected based on behavioral
measures of habituation, which may reflect protective mechanisms
against chronically elevated cortisol levels. There is some evidence
that stabilizing conditions, such as an improvement in the predict-
ability of food acquisition may decrease a stress response and
could possibly reduce the time required to return to baseline when
wild-caught animals are held in temporary captivity and fed at reg-
ular intervals (Romero, 2004). On the other hand, the diet in captiv-
ity differed from the natural diet which could potentially also
influence the change from baseline FGCM levels to subsequent
measurements (Behie et al., 2010; Dantzer et al., 2011; Goymann,
2005; Goymann, 2012; Millspaugh and Washburn, 2004) in our
study. Overall, our study joins many others in stressing the impor-
tance of validation across contexts: we have shown that the delay
from the stressor to recording the peak stress response via feces
differed between experiments using captive and wild animals. This
source of uncertainty should be considered when conducting GC
research in conditions that differ from the validation setting.

4.2. Post-defecation FGCM change in unpreserved feces

Our experiment illustrates that FGCM concentrations in grey
mouse lemurs are generally unaffected when preservation of the
sample in alcohol takes place within 10 h of defecation. To date,
few studies have investigated hormone change in feces between
defecation and fixation. Most of these studies demonstrated either
an increase (cattle, horses and pigs (Mostl et al., 1999); Borneon

orangutans (Muehlenbein et al., 2012), or decrease (brown hyena
Hulsman et al., 2011; lowland gorilla (Shutt et al., 2012) in FGCM
concentrations within a few hours when samples were stored unp-
reserved at ambient temperature. Our findings are therefore note-
worthy and imply that immediate fecal preservation is not
absolutely necessary to obtain reliable FGCM results for mouse le-
murs (see also Rehnus et al., 2009 for mountain hares). This is of
particular importance for studies in the wild where immediate
immersion of the feces after defecation in ethanol may be difficult
to accomplish. In our setting, most individuals are captured in the
first hours of the activity period and the period between defecation
to preservation of the sample in ethanol is largely standardized.
However, as defecation time is often not accurately known, only
fresh-looking feces were collected to minimize the time interval
between defecation and fecal preservation and the risk of sample
degradation. Confirming the findings from our captive experiment,
no effect of the sampling-to-preservation period was found on
FGCM results in the samples collected from wild animals.

4.3. Correlates of baseline FGCM

Adult wild mouse lemurs had significantly higher baseline
FGCM levels than juveniles, which agrees with the trend found in
humans, some non-human primates and rodents (Gunnar and
Quevedo, 2007; Romeo, 2010; Sanchez et al., 2001; Sapolsky and
Altmann, 1991; Sapolsky and Meaney, 1986; Sapolsky et al.
1987) and has been explained with the maturation and senescence
of the adrenocortical system. The individual’s sex or time of day of
the sampling (morning vs. evening) had no influence on the FGCM
levels. Uncontrollable variables such as diet, metabolic rates or
bacterial communities may cause variation between individuals
in the measured GC titres (Goymann, 2012) and could be partially
responsible for the observed, substantial inter-individual variation.
The water content of the feces significantly negatively influenced
the baseline level. The influence of water content probably merely
signifies the solid mass of the feces into which GC could be ex-
creted or, alternatively, it may reflect the hydration status of the
animal, which itself can cause a stress response (Kiss et al., 1994;
Ulrich-Lai and Engeland, 2002).

4.4. Influence of handling stress on the hormonal stress response

As expected, the capture-and-handling protocol in general acts
as a stressor, causing on average a threefold increase in FGCM lev-
els from baseline within 2 days of the stressor. This is significantly
lower than the responses recorded in the validation series con-
ducted in the wild, where the peak GC elevation to stressors (cap-
ture, handling and subsequent temporary captivity) resulted, on
average, in an 8-fold increase from baseline GC and the delay to
peak FGCM response ranged between approximately 34-63 h after
capture. The “trap happy” behavioral response (i.e. increased cap-
turing probability) of most individuals in the population (Kraus
et al., 2008) that leads to repeated voluntary trap entry may further
indicate that the protocol causes them comparatively low levels of
stress.

Individuals with higher baseline FGCM levels typically showed
a higher response to the stressor than individuals with low base-
line levels. This implies that also animals with higher baseline
FGCM levels maintain the capacity to react adequately to stressful
stimuli and do not show a desensitization of the HPA axis (associ-
ated with an attenuated stress response) as reported for animals
that are severely or chronically stressed (Rich and Romero, 2005).
High FGCM baseline levels, measured prior to an acute stressor, are
typically interpreted as a sign of chronic stress (but see Cyr and
Romero, 2009; Dickens et al., 2013), which in turn is known for
its multiple detrimental influences on health, fitness and survival
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(Crespi et al., 2013; Romero, 2004). The samples collected on the
day of first capture were considered to represent the baseline level,
but, since the animals could not be monitored prior to the captures,
we cannot rule out the occurrence of prior natural stressors that
may have elevated the pre-handling FGCM levels. Therefore the
minority of cases that showed a decline in FGCM from baseline
to day 3 likely reflect recovery from another stressor rather than
a decline in GC level as a response to capture and handling. Con-
trary to our predictions, prior capture experience had no influence
on the baseline FGCM level or on the magnitude of the stress re-
sponse, which indicates a lack of habituation (or sensitization) to
the repeated stressor. Few studies have previously explored the
potential for habituation to repeated handling but the available
studies (mainly from captive conditions, e.g. (Dobrakovova et al.,
1993; Jones and Waddington, 1992)) suggest that repeated han-
dling can lead to habituation when done regularly at relatively
short intervals (several times per week). Longer intervals (several
weeks) between stressors typically do not lead to habituation
(e.g. Desportes et al., 2007; Dickens et al., 2013; Tort et al., 2001)
since long delays between similar stressors may render the stres-
sor too unpredictable for the animal to habituate to (Dickens
et al., 2013; Fowler, 1999; Koolhaas et al., 2011). In our study pop-
ulation, the capturing is usually conducted at monthly intervals
with seasonal breaks (reproduction and the high dry season) and
handling is done on the first day, after which recaptured animals
are only transported and fed, which may further decrease the pre-
dictability of the process for the animal. It has been suggested that
habituation may also take the form of a more rapid recovery from
the stressor even when the magnitude of the response remains
similar (Sheriff et al., 2010) but unfortunately this possibility could
not be addressed in our experimental design. Further support for
the lack of habituation is suggested by the exploratory analyses
of repeated measurements of the stress response (data not shown)
for a small number of animals (n = 9) that could be repeatedly sam-
pled in more than one capture session. While the sample size was
insufficient for meaningful statistical analyses, these data sug-
gested no systematic changes in the magnitude of the response
within an individual from one capture session to another. The trap-
ping frequency of an individual may be influenced by the exact
location of its home range (e.g. center or edge of the study area)
and it can be associated with certain personality traits, which
may also influence the individual’s stress levels (Koolhaas et al.,
1999; Montiglio et al.,, 2012). However, explorative analysis of
our (limited) data showed no patterns suggesting that individuals
with lower baseline levels or lower stress responses on the first
capture of the season would enter traps more frequently later on
in the season.

Also in contrast to our predictions, the handling regime had no
significant influence on the physiological response evoked at a
two-day delay from the stressor, although lowest values were gen-
erally measured for animals in the anesthesia regime (probably
due to these animals being the youngest of the cohort, or due to
changes in metabolism induced by anesthesia) and highest for
those individuals that were handled repeatedly. Handling is, how-
ever, only a short part of the protocol and likely contributes only
partially to the variation in the response strength: individuals
may experience differing levels of stress due to confinement in
the trap and transport. This, along with some degree of cumulative
stress induced by intermediate captures and the “noisy” data may
mask any fine scale differences between the handling regimes.

5. Conclusions

The successful validation of a fecal glucocorticoid metabolite as-
say (11R-hydroxyetiocholanolone) in grey mouse lemurs permit-

ted us to use the routine recapturing of animals to measure
stress induced by capture and handling without the need to draw
blood or to restrain animals beyond the capture events. Routine
capturing does not appear to induce chronic stress or lead to habit-
uation in animals captured at monthly intervals. Bearing in mind
the restrictions posed by the data, we also found no indications
of the invasiveness of the handling influencing the magnitude of
the stress response. Overall, the data suggests that regular captur-
ing does not lead to long-term changes in the stress physiology
that could interfere with the study of other phenomena in the spe-
cies using a capture-and-handling design, or risk the well-being of
the study animals. The methods we describe will be useful for the
monitoring of health and overall physiological status of individuals
or populations of wild mouse lemurs efficiently and in a relatively
non-invasive manner.
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